學(xué)寶教育旗下公務(wù)員考試網(wǎng)站
當(dāng)前位置:主頁  >> 行測資料  >> 數(shù)量   
數(shù)量
三種方法巧解排列組合題-2024山東公務(wù)員考試行測解題技巧
http://glamoredanceentertainment.com       2023-04-12      來源:山東公務(wù)員考試網(wǎng)
【字體: 】              
  提到行測排列組合題目,考生們第一反應(yīng)就是“難”,第二反應(yīng)就是放棄。但如果在平時備考中能掌握一些常用的解題方法,勤加練習(xí),在真正的考場上是可以嘗試去做,讓自己更上一層樓的。接下來給大家介紹三種常用方法。

  一、優(yōu)限法

  適用環(huán)境:題干中出現(xiàn)有絕對限制條件的元素或者位置時,考慮用優(yōu)限法。

  具體操作:優(yōu)先安排有限制條件的元素或者位置,再安排其他元素或者位置。

  【例1】一次會議某單位邀請了10名專家,該單位預(yù)定了10個房間,其中一層5間、二層5間。已知邀請專家中4人要求住二層、3人要求住一層、其余3人住任一層均可。那么要滿足他們的住房要求且每人1間,有多少種不同的安排方?

  A.75

  B.450

  C.7200

  D.43200

  答案:D

  【解析】本題中要將10名專家安排到10個房間,且每間安排一人。在安排過程中提到兩個要求:1.4人要求住2層,2.3人要求住1層。這兩個要求就體現(xiàn)了我們說的“有絕對限制條件的元素”。因此我們考慮用優(yōu)限法解決。共有10人,其中4人要求住2層,從二層的5個房間中選出4個,安排4人入住,其方法數(shù)為\,3人要求住一層,從一層的5個房間中選出3個,安排3人入住,其方法數(shù)為\,其余3人安排住剩下的3個房間,其方法數(shù)為\,故共有\種不同的安排方案。

  二、捆綁法

  適用環(huán)境:題干中要求元素相鄰或者位置相鄰時,考慮捆綁法。

  具體操作:先考慮整體的順序要求,再考慮整體內(nèi)部的順序要求。

  【例2】為加強(qiáng)機(jī)關(guān)文化建設(shè)某市直機(jī)關(guān)在系統(tǒng)內(nèi)舉辦演講比賽3個部門分別派出3、2、4名選手參加比賽,要求每個部門的參賽選手比賽順序必須相連,問不同的參賽順序的種數(shù)在以下哪個范圍之內(nèi)?

  A小于1000

  B1000-5000

  C.5001-20000

  D.大于20000

  答案:B

  【解析】本題中要安排3個部門中參賽選手的演出順序。在安排過程中要求每個部門的參賽選手比賽順序必須相連。這個要求體現(xiàn)了我們說的“元素相鄰”,考慮用捆綁法,首先將三個部門的選手看成3個整體,考慮三個整體的出場順序,有\=6種;其次考慮每個整體內(nèi)選手的出場順序,分別有\=6種,\=2種,\=24種。則不同參賽順序的種數(shù)為6×6×2×24=1728,計算結(jié)果顯然大于1000小于5000,故此題答案為B。

  三、插空法

  適用環(huán)境:題干中要求元素不相鄰時,考慮插空法。

  具體操作:先安排其他元素的位置,再將不相鄰的元素插空安排。

  【例3】由數(shù)字1、2、3、4、5組成無重復(fù)數(shù)字的五位數(shù),兩個偶數(shù)互不相鄰的五位數(shù)有幾個?

  答案:72個

  【解析】本題中要用1-5個組成無重復(fù)數(shù)字的五位數(shù),組數(shù)過程中要求兩個偶數(shù)互不相鄰,這提現(xiàn)了我們說的“要求元素不相鄰”,考慮用插空法。先安排剩余的3個奇數(shù),有\=6種,在從奇數(shù)形成的4個空位里選2個空將剩余的2個偶數(shù)放入,有\=12種,因此所求為6×12=72個。


免費(fèi)學(xué)習(xí)資源(關(guān)注可獲取最新開課信息)
互動消息